2,166 research outputs found

    Supergraph techniques for D=3,N=1 broken supersymmetric theories

    Full text link
    We enlarge the usual D=3 N=1 supergraph techniques to include the case of (explicitly or spontaneously) broken supersymmetric gauge theories. To illustrate the utility of these techniques, we calculate the two-loop effective potential of the SQED3 by using the tadpole and the vacuum bubble methods. In these methods, to investigate the possibility of supersymmetry breaking, the superfields must be shifted by θ\theta dependent classical superfields (vacuum expectation values), what implies in the explicit breakdown of supersymmetry in the intermediate steps of the calculation. Nevertheless, after studying the minimum of the resulting effective potential, we find that supersymmetry is conserved, while gauge symmetry is dynamically broken, with a mass generated for the gauge superfield.Comment: revtex4, 14 pages, 2 figures, Journal versio

    Point Source Detection using the Spherical Mexican Hat Wavelet on simulated all-sky Planck maps

    Get PDF
    We present an estimation of the point source (PS) catalogue that could be extracted from the forthcoming ESA Planck mission data. We have applied the Spherical Mexican Hat Wavelet (SMHW) to simulated all-sky maps that include CMB, Galactic emission (thermal dust, free-free and synchrotron), thermal Sunyaev-Zel'dovich effect and PS emission, as well as instrumental white noise. This work is an extension of the one presented in Vielva et al. (2001a). We have developed an algorithm focused on a fast local optimal scale determination, that is crucial to achieve a PS catalogue with a large number of detections and a low flux limit. An important effort has been also done to reduce the CPU time processor for spherical harmonic transformation, in order to perform the PS detection in a reasonable time. The presented algorithm is able to provide a PS catalogue above fluxes: 0.48 Jy (857 GHz), 0.49 Jy (545 GHz), 0.18 Jy (353 GHz), 0.12 Jy (217 GHz), 0.13 Jy (143 GHz), 0.16 Jy (100 GHz HFI), 0.19 Jy (100 GHz LFI), 0.24 Jy (70 GHz), 0.25 Jy (44 GHz) and 0.23 Jy (30 GHz). We detect around 27700 PS at the highest frequency Planck channel and 2900 at the 30 GHz one. The completeness level are: 70% (857 GHz), 75% (545 GHz), 70% (353 GHz), 80% (217 GHz), 90% (143 GHz), 85% (100 GHz HFI), 80% (100 GHz LFI), 80% (70 GHz), 85% (44 GHz) and 80% (30 GHz). In addition, we can find several PS at different channels, allowing the study of the spectral behaviour and the physical processes acting on them. We also present the basic procedure to apply the method in maps convolved with asymmetric beams. The algorithm takes ~ 72 hours for the most CPU time demanding channel (857 GHz) in a Compaq HPC320 (Alpha EV68 1 GHz processor) and requires 4 GB of RAM memory.Comment: 18 pages, 11 figures, revised version (minor changes). MNRAS accepted; high quality color figures upon request to the author

    Coleman-Weinberg mechanism in a three-dimensional supersymmetric Chern-Simons-matter model

    Get PDF
    Using the superfield formalism, we study the dynamical breaking of gauge symmetry in the N=1 three-dimensional supersymmetric Chern-Simons model, coupled to a complex scalar superfield with a quartic self-coupling. This is an analogue of the conformally invariant Coleman-Weinberg model in four spacetime dimensions. We show that a mass for the gauge and matter superfields are dynamically generated after two-loop corrections to the effective superpotential. We also discuss the N=2 extension of our work, showing that the Coleman-Weinberg mechanism in such model is not feasible, because it is incompatible with perturbation theory.Comment: 14 pages, 2 figures. Minor corrections, references added. Journal versio

    Dynamical (super)symmetry vacuum properties of the supersymmetric Chern-Simons-matter model

    Get PDF
    By computing the two-loop effective potential of the D=3 N=1 supersymmetric Chern-Simons model minimally coupled to a massless self-interacting matter superfield, it is shown that supersymmetry is preserved, while the internal U(1) and the scale symmetries are broken at two-loop order, dynamically generating masses both for the gauge superfield and for the real component of the matter superfield.Comment: revtex4, 12 pages, 2 figures, journal versio

    A New Pleiades Member at the Lithium Substellar Boundary

    Full text link
    We present the discovery of an object in the Pleiades open cluster, named Teide 2, with optical and infrared photometry which place it on the cluster sequence slightly below the expected substellar mass limit. We have obtained low- and high-resolution spectra that allow us to determine its spectral type (M6), radial velocity and rotational broadening; and to detect Hα_\alpha in emission and Li I 670.8 nm in absorption. All the observed properties strongly support the membership of Teide 2 into the Pleiades. This object has an important role in defining the reappearance of lithium below the substellar limit in the Pleiades. The age of the Pleiades very low-mass members based on their luminosities and absence or presence of lithium is constrained to be in the range 100--120 Myr.Comment: 17 pages, 3 figure

    Spherical Mexican Hat wavelet: an application to detect non-Gaussianity in the COBE-DMR maps

    Get PDF
    The spherical Mexican Hat wavelet is introduced in this paper, with the aim of testing the Gaussianity of the Cosmic Microwave Background temperature fluctuations. Using the information given by the wavelet coefficients at several scales, we have performed several statistical tests on the COBE-DMR maps to search for evidence of non-Gaussianity. Skewness, kurtosis, scale-scale correlations (for two and three scales) and Kolmogorov-Smirnov tests indicate that the COBE-DMR data are consistent with a Gaussian distribution. We have extended the analysis to compare temperature values provided by COBE-DMR data with distributions (obtained from Gaussian simulations) at each pixel and at each scale. The number of pixels with temperature values outside the 95% and the 99% is consistent with that obtained from Gaussian simulations, at all scales. Moreover, the extrema values for COBE-DMR data (maximum and minimum temperatures in the map) are also consistent with those obtained from Gaussian simulations.Comment: to be published in MNRA
    corecore